FTP1/01 Dynamic Mechanical Properties of Reduced Activation Ferritic Steels

نویسندگان

  • T. Hirose
  • H. Tanigawa
  • A. Kohyama
چکیده

A fatigue test method by a miniaturized hourglass-shaped fatigue specimen has been developed for International Fusion Materials Irradiation Facility (IFMIF) and sufficient potential as the alternative to a conventional large specimen was presented. Furthermore, focused ion beam micro-sampling method was successfully applied to microstructural analysis on fracture process. Where, the effects of displacement damage and transmutation helium on the fatigue properties of Reduced Activation Ferritic/Martensitic Steels, RAFs, were investigated. Neutron irradiation and helium-ion-implantation at ambient temperature caused radiation hardening to degrade fatigue lifetime of F82H steel. Microstructural analysis revealed that local brittle fractures occurred at early stage of fatigue tests was the origin of the degradation.. No significant difference in fatigue life degradation was detected with and without implanted helium. This result suggests that 100 appm helium implanted has no impact on fracture life time under neutron irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hot tensile properties of 9Cr-2WVTa reduced-activation ferritic/martensitic steel

Reduced-activation ferritic/martensitic steels have been developed by replacing molybdenum by tungsten and niobium by tantalum in commercial elevated-temperature Cr–Mo steels to reduce half-life of radioactive isotopes. The objective of this study was to investigate tensile properties of a reduced-activation ferritic/martensitic steel (9Cr-2WVTa) in normalized-tempered (NT) and quenched-tempere...

متن کامل

Optimisation of the Chemical Composition and Manufacturing Route for ODS RAF Steels for Fusion Reactor Application

As the upper temperature for use of reduced activation ferritic/martensitic (RAFM) steels is presently limited by a drop in mechanical strength at about 550°C, Europe, Japan and the US are actively researching steels with high strength at higher operating temperatures, mainly using stable oxide dispersion. In addition, the numerous interfaces between matrix and oxide particles are expected to a...

متن کامل

Recent progress of R&D activities on reduced activation ferritic/martensitic steels

Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and...

متن کامل

Current Status of Reduced-Activation Ferritic/Martensitic Steels R&D for Fusion Energy

Reduced-activation ferritic/martensitic (RAF/M) steels have been considered to be the prime candidate for the fusion blanket structural material. The irradiation data obtained up to now indicates rather high feasibility of the steels for application to fusion reactors because of their high resistance to degradation of material performance caused by both the irradiation-induced displacement dama...

متن کامل

High heat flux testing of 12–14Cr ODS ferritic steels

0022-3115/$ see front matter 2009 Published by doi:10.1016/j.jnucmat.2009.09.022 * Corresponding author. E-mail address: [email protected] (Z. Oksiut The thermal performance of Fe–(12–14)Cr–2W–0.3Ti–0.3Y2O3 ODS reduced activation ferritic steels, which are considered as candidate first wall materials for the future fusion power reactors and were manufactured by mechanical alloying in hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002